# Arneodo-Attractor (alpaca_60) # x' = y, x0 = 1 # y' = z, y0 = 1 # z' = a*x-b*y-z-c*x^3, z0=0 # a=5,5; b=3,5; c=1 # # SCALING # the problem is patched as designed, but x runs out of range # Trial: x = 5*xn (xn = new x), y = 10*yn, z = 15*zn # 5*xn' = 10*y => xn' = 2*y # 10*y' = 15*zn => y' = 1,5*z # 15*zn' = a*5*xn-b*10*yn-15*zn-c*(5*xn)^3 => z' = a*5/15*xn-b*10/15*yn-15/15*zn-c*125/15*xn^3 # # xn' = d1*y # yn' = e1*z # zn' = a1*xn-b1*yn-zn-c1*xn^3 # # a1 = a*5/15 = 1,83 # b1 = b*10/15 = 2,33 # c1 = c*5^3/15 = 8,33 # d1 = 2 # e1 = 1,5 # # in the following, the original terms are being used, coefficient.1 -> a/10 # 0,183 -> better results with 0,154 coefficient.2 -> b/10 # 0,233 coefficient.3 -> c/10 # 0,833 coefficient.4(+1) -> x0 # 0,200 coefficient.5(+1) -> y0 # 0,100 coefficient.6(+1) -> z0 # 0 coefficient.7 -> d/10 # 0,200 coefficient.8 -> e/10 # 0,150 iintegrate 10*: x' -> -x IC: x0 iintegrate 10*: y' -> -y IC: y0 iintegrate z' -> -z IC: z0 invert -x -> x invert -y -> y cmultiply y, d/10 -> d/10*y assign d/10*y -> x' invert -z -> z cmultiply z, e/10 -> e/10*z assign e/10*z -> y' cmultiply x, a/10 -> a/10*x cmultiply -y, b/10 -> -b/10*y multiply -x, -x -> x^2 multiply x^2, -x -> -x^3 cmultiply -x^3, c/10 -> -c/10*x^3 isum 10*:a/10*x, 10*:-b/10*y, -z, 10*:-c/10*x^3 -> -(a*x-b*y-z-c*x^3) invert -(a*x-b*y-z-c*x^3) -> a*x-b*y-z-c*x^3 assign a*x-b*y-z-c*x^3 -> z' output x -> out.x output y -> out.y output z -> out.z